Antes restrita a profissionais de Tecnologia da Informação (TI) e programadores, hoje a Inteligência Artificial passa por um processo de universalização, contudo ainda não há equidade no acesso a estas ferramentas.
Lançados inicialmente de forma gratuita, alguns aplicativos de IA já estão se tornando um Software as a Service (SaaS) cobrado dentro do modelo Freemium (algumas funcionalidades gratuitas e outras pagas), gerando desigualdades em seu uso.
O ChatGPT, por exemplo, permite o acesso gratuito à versão 3.5, enquanto os assinantes do plano Plus têm direito ao uso da versão 4.0. Além da frequente indisponibilidade da versão gratuita, seus usuários contam com um sistema que não consegue entender imagens, que não cita as fontes de pesquisa e que processa cerca de oito vezes menos palavras em comparação com a versão GPT-4.
Outro diferencial da versão Plus do ChatGPT é que ela tem acesso a informações atualizadas de seu dataset, diferentemente da opção gratuita cuja base de dados só vai até setembro de 2021.
Já a ferramenta de IA Generativa de imagens “Midjourney” encerrou os acessos gratuitos alegando sobrecarga do sistema após a viralização de imagens sintéticas do Papa Francisco e do ex-presidente dos EUA, Donald Trump, criadas a partir do aplicativo. Nesta esteira, o serviço de IA Generativa “Copilot” estará disponível no serviço oneroso “Microsoft 365”.
Mais uma desigualdade reside na criação de ferramentas de IA apenas para usuários de dispositivos da Apple, como IPhone e iPad. O aplicativo Kaiber, por exemplo, só foi disponibilizado inicialmente para usuários do sistema iOS, o que representa em 2023 uma ampla minoria de pessoas em todo o mundo.
Já o “Bard”, sistema de inteligência artificial do Google, foi lançado primeiramente apenas para residentes nos Estados Unidos e no Reino Unido. Numa segunda onda, abriu a ferramenta para 180 nações, mas excluiu da lista Brasil, Canadá e países da União Europeia, justamente as regiões que estão em processo de implementação de leis que regulamentam o uso da internet, impondo limites e responsabilidade às Big Techs.
Há ferramentas que possibilitam o uso de computadores pessoais para a geração de imagens, como o “Stable diffusion”, porém é necessário o uso uma GPU (unidade de processamento gráfico) potente, dispositivo de elevado custo. Já os sistemas de análises de dados com IA e as ferramentas de machine learning exigem grande capacidade computacional para serem treinados e terem as informações processadas, configurando mais uma desigualdade neste campo.
Outra barreira de implementação está no acesso à internet no Brasil. Apesar de estar difundida para a maioria da população, levantamento (IDEC, 2021) mostra que a adoção de planos com Zero-Rating pelas classes C, D e E cria um descompasso entre as possibilidades de acesso à internet de acordo com o poder aquisitivo do cidadão.
Mesmo proibido pelo Marco Civil da Internet (Lei nº 12.965/2014) e pelo Decreto 8771/2016, as operadoras continuam oferecendo planos com franquias pequenas de pacote de dados mas com acesso ilimitado a determinados aplicativos como Whatsapp e Facebook. Tal situação de restrição do acesso à informação é apontada como uma das causas para a desinformação durante a pandemia da Covid-19, fenômeno chamado de Infodemia (D’AGOSTINI, 2021).
Em janeiro de 2023, a partir de pedido do movimento social Coalizão de Direitos da Rede (CDR), o Governo Federal solicitou que o CADE analisasse os impactos do zero-rating.
Mais um ponto de destaque diz respeito às licenças de uso dos softwares e sistemas envolvidos na Saúde Digital. O Prontuário Eletrônico do Cidadão (PEC), por exemplo, é baseado no software público e-SUS AB. A mesma diretriz deve acompanhar o desenvolvimento de ferramentas de IA para o SUS, garantindo sua universalização.
Por outro lado, no que tange à infraestrutura, o DataSUS está hospedado em servidor privado (AWS – Amazon Web Services). Esta opção reduz a independência da gestão dos dados e pode colocar em risco a política pública se houver descontinuidade do serviço com impossibilidade de migração para outra infraestrutura. Tal percepção é aumentada pelo fato de a empresa contratada possuir um projeto de Data Lake para a Saúde (Amazon HealthLake), que conta com o protocolo FHIR (Fast Healthcare Interoperability Resources), escolhido pela Organização Mundial da Saúde (OMS) para sistemas de Open Health. O Amazon HealthLake já está sendo utilizado pelo Hospital Sírio-Libanês em aplicações de ciência de dados na saúde privada.
A título de comparação, o Ministério da Educação (MEC) não conseguiu acesso ao acervo de conteúdos produzidos durante a execução de contrato de gestão com a Associação de Comunicação Educativa Roquette Pinto (ACERP) para funcionamento da TV Escola e da TV INES, situação que teve como consequência a descontinuidade dos projetos anteriores e a criação posterior de duas novas emissoras em parceria com a Empresa Brasil de Comunicação (EBC): Canal Educação e Canal Libras.
A própria lei de criação do SUS (Lei 8080 de 1990) em seu artigo 47 já prevê a criação de um “sistema nacional de informações em saúde, integrado em todo o território nacional, abrangendo questões epidemiológicas e de prestação de serviços”.
Quanto à inovação em Saúde, o setor privado tem apostado na incubação de startups, como é o caso da Eretz.bio do Hospital Albert Einstein e da Alma do Hospital Sírio-Libanês. Todavia, os empreendimentos do tipo são comumente adquiridos por grandes corporações ou morrem sem conseguir amadurecer o produto ou serviço. Por isso, para o SUS, o mais efetivo seria o investimento em políticas estruturantes com o desenvolvimento de laboratórios de inovação em centros de pesquisa públicos.
Diferentemente dos princípios e diretrizes do SUS, a inovação no setor privado tem como base um processo organizado em seis etapas por Peter Diamandis, sendo que somente o último seria o da “democratização” (DIAMANDIS, 2016). Deste modo, a inovação caminharia mais para uma medicina de precisão focada apenas no atendimento de um pequeno segmento da sociedade.
Desigualdade adicional diz respeito à quantidade de dados disponíveis sobre cada paciente. O fenômeno da Internet das Coisas Médicas (internet of medical things – IoMT) consiste na presença de diversos dispositivos que geram dados de saúde sobre as pessoas para além do ambiente hospitalar e do consultório médico. Estes dispositivos compartilham dados em tempo real que podem antecipar o diagnóstico de situações como um infarto, o que aumentaria a possibilidade de recuperação do enfermo. Dispositivos vestíveis (wearable devices) já estão presentes no cotidiano de uma parcela da sociedade, contudo ainda são inacessíveis à maioria da população relógios inteligentes (smart watches), sensores de pele (skin sensors), medidor de pressão conectado, além de sensores de movimento para a prática esportiva, batimentos cardíacos (HRM) e monitoramento do sono.
A extração dos dados da IoMT possibilita um atendimento personalizado, aprofundado e ágil aos pacientes, causando grande diferença se comparado ao atendimento generalista, superficial e demorado de quem não tiver acesso a tais dispositivos, principalmente na atenção primária. Por outro lado, a geração de grande volume de dados pessoais traz à tona questões de privacidade e controle social dos dados.
No caso de regiões remotas, como aldeias indígenas e comunidades rurais e ribeirinhas com reduzida assistência de Saúde, políticas públicas de IoMT poderiam suplementar programas como o “Mais Médicos” (PMM), por exemplo, permitindo ao médico que as informações de Saúde sejam processadas de forma remota, auxiliando o trabalho do profissional de saúde localmente. Programas neste sentido seriam gestados por ações conjuntas dos ministérios da Saúde e das Comunicações.
O Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (Proadi-SUS) já possui um projeto-piloto neste sentido em cidades ribeirinhas do Amazonas e do Pará (projeto TeleAMEs), onde um médico generalista da atenção básica faz a intermediação para o teleatendimento por especialistas localizados em outras cidades brasileiras (LIRA, 2022). Projeto também de referência no SUS, o programa de TelessaúdeRS promove ações de teleducação, telediagnóstico e teleconsultoria na atenção primária no Rio Grande do Sul.
Sobre a jornada do paciente, sem a efetiva implementação do Open Health no Brasil, apenas as empresas verticalizadas conseguiriam utilizar os dados clínicos coletados, formando uma espécie de oligopólio no setor de saúde privada. A Rede D’or, por exemplo, adquiriu recentemente o seguro Sulamérica, a rede de maternidades Perinatal e o laboratório Richet.
Uma defasagem no sentido da conectividade e de uso de dados em situações de emergência poderá ser encontrada nas ambulâncias com conexão 5G. Já em funcionamento a partir de parceria entre a TIM, a Delloitte e o Hospital Sírio-Libanês, este “veículo inteligente” promove uma melhor troca de informações entre a equipe do hospital e da ambulância, diminuindo os riscos de equívocos de comunicação na transição do paciente (handoff e handover).
Dentro dos hospitais, a conectividade dos dispositivos viabiliza uma supervisão remota em tempo real reduzindo a probabilidade de erros médicos. O Hospital Israelita Albert Einstein (HIAE) possui um centro de controle operacional que supervisiona toda a jornada do paciente e aciona equipes locais caso algum dos indicadores esteja em desconformidade, como o caso de a equipe de enfermagem não administrar determinada medicação dentro do tempo previsto.
Em processo análogo à Divisão Internacional do Trabalho (DIT), outra perspectiva de análise sobre a desigualdade reside no papel de países desenvolvidos e subdesenvolvidos no processo de produção e processamento de dados em nível mundial. No “colonialismo de dados”, os países subdesenvolvidos forneceriam a matéria prima (dados) para o desenvolvimento de tecnologias pelos países desenvolvidos.
Em 2021, o Núcleo de Estudos sobre Bioética e Diplomacia em Saúde (Nethis) da Fiocruz Brasília criou o Observatório de Desenvolvimento e Desigualdades em Saúde e Inteligência Artificial (Odisseia) com o objetivo de fomentar a elevação do acesso do SUS à Transformação Digital em Saúde em conjunto com a IA.
REFERÊNCIAS:
Arthur William Santos é mestre em Educação, Cultura e Comunicação (UERJ), pós-graduado no MBA de TV Digital, Radiodifusão e Novas Mídias de Comunicação Eletrônica (UFF), graduado em Comunicação Social / Jornalismo (PUC-Rio) e técnico em eletrônica (CEFET-RJ). Foi gerente executivo de Produção, Aquisição e Parcerias na EBC, além de gerenciar o setor de Criação de Conteúdos e coordenar as Redes Sociais da TV Brasil. Liderou também a área de Inovação/Novos Negócios na TV Escola. Atuou ainda na criação do Canal Educação e do Canal LIBRAS para o Ministério da Educação (MEC). Fez cursos presenciais em Harvard e Stanford sobre Inovação na Educação. Deu aulas em cursos de graduação e pós-graduação nas universidades UniCarioca, Unigranrio, FACHA, INFNET e CEFOJOR (Angola). É membro da SET (Sociedade de Engenharia de Televisão).